Modeling and Control with Local Linearizing Nadaraya Watson Regression

نویسندگان

  • Steffen Kühn
  • Clemens Gühmann
چکیده

Black box models of technical systems are purely descriptive. They do not explain why a system works the way it does. Thus, black box models are insufficient for some problems. But there are numerous applications, for example, in control engineering, for which a black box model is absolutely sufficient. In this article, we describe a general stochastic framework with which such models can be built easily and fully automated by observation. Furthermore, we give a practical example and show how this framework can be used to model and control a motorcar powertrain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Nadaraya-Watson Regression Estimation

In this article we study nonparametric estimation of regression function by using the weighted Nadaraya-Watson approach. We establish the asymptotic normality and weak consistency of the resulting estimator for-mixing time series at both boundary and interior points, and we show that the estimator preserves the bias, variance, and more importantly, automatic good boundary behavior properties of...

متن کامل

On the Adaptive Nadaraya-watson Kernel Regression Estimators

Nonparametric kernel estimators are widely used in many research areas of statistics. An important nonparametric kernel estimator of a regression function is the Nadaraya-Watson kernel regression estimator which is often obtained by using a fixed bandwidth. However, the adaptive kernel estimators with varying bandwidths are specially used to estimate density of the long-tailed and multi-mod dis...

متن کامل

Sequential Fixed-width Confidence Bands for Kernel Regression Estimation

We consider a random design model based on independent and identically distributed (iid) pairs of observations (Xi, Yi), where the regression function m(x) is given by m(x) = E(Yi|Xi = x) with one independent variable. In a nonparametric setting the aim is to produce a reasonable approximation to the unknown function m(x) when we have no precise information about the form of the true density, f...

متن کامل

Evolutionary kernel density regression

The Nadaraya–Watson estimator, also known as kernel regression, is a density-based regression technique. It weights output values with the relative densities in input space. The density is measured with kernel functions that depend on bandwidth parameters. In this work we present an evolutionary bandwidth optimizer for kernel regression. The approach is based on a robust loss function, leave-on...

متن کامل

A Simple Smooth Backfitting Method for Additive Models

In this paper a new smooth backfitting estimate is proposed for additive regression models. The estimate has the simple structure of Nadaraya–Watson smooth backfitting but at the same time achieves the oracle property of local linear smooth backfitting. Each component is estimated with the same asymptotic accuracy as if the other components were known. 1. Introduction. In additive models it is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0809.3690  شماره 

صفحات  -

تاریخ انتشار 2008